${ }^{\text {a }}$ Department of Organic Chemistry, Palacky University, Tř. Svobody 8, 77146 Olomouc, Czech Republic, Fax:++420-68-5634405, E-mail: ph.1@tiscali.cz
bResearch Institute for Organic Syntheses, Pardubice, 53218 Czech Republic; Antonin.Lycka@vuosas.cz ${ }^{\text {c Università di Ferrara, Dipartimento di Chimica, Via L. Borsari, 46, } 44100 \text { Ferrara, }}$ Italy; m38@dns.unife.it Received November 10, 2003

Abstract

As known, some derivatives of quinolin- $4(1 \mathrm{H})$-one possess interesting biological properties. The biological and cytostactic activity of 2 -substituted 3-hydroxyquinolin- $4(1 \mathrm{H})$-ones has not been reported yet. In this paper the synthesis of a series of chloro and dichloro 2-phenyl-3-hydroxyquinolin-4(1 H)-ones and their characterization by NMR spectra and X-ray data is described. Their cytostatic properties have been evaluated and the results are reported.

J. Heterocyclic Chem., 41, 375 (2004).

2-Phenyl-3-hydroxyquinolin-4(1 H)-ones are a group of compounds isosteric with natural flavonoids - natural compounds exhibiting cytostatic and antileukemic properties. Biological activity of flavonoids is intensively studied, on the other hand, biological activity of substituted 3-hydrox-yquinolin- $4(1 H)$-ones has not been described yet. As a part of our work at this theme we have synthesized series of dichloro and monochloroderivatives. Their structures and their cytostacic activity were studied.

Chloro and dichloro derivatives of 3-hydroxy-2-phenyl-quinolin- $4(1 \mathrm{H})$-ones were synthesized from commercially available chloro and dichloro anthranilic acids 1a-10a, according to methods of preparation and cyclization of phenacyl anthranilates previously described [1,2]. These acids were treated with phenacyl bromide to give phenacyl anthranilates $\mathbf{1 b} \mathbf{- 1 0 b}$. After their cyclization in polyphos-

Scheme 1

$\mathbf{1 a}, \mathbf{b}, \mathbf{c}$	Cl	H	H	H
$\mathbf{2 a}, \mathbf{b}, \mathbf{c}$	H	Cl	H	H
$\mathbf{3 a}, \mathbf{,}, \mathbf{c}$	H	H	Cl	H
$\mathbf{4 a}, \mathbf{b}, \mathbf{c}$	H	H	H	Cl
$\mathbf{5 a , b , \mathbf { b } , \mathbf { c }}$	Cl	Cl	H	H
$\mathbf{6 a}, \mathbf{b}, \mathbf{c}$	Cl	H	Cl	H
$\mathbf{7 a}, \mathbf{b}, \mathbf{c}$	Cl	H	H	Cl
$\mathbf{8 a}, \mathbf{b}, \mathbf{c}$	H	Cl	Cl	H
$\mathbf{9 a , b , \mathbf { c } , \mathbf { c }}$	H	Cl	H	Cl
$\mathbf{1 0 a}, \mathbf{b}, \mathbf{c}$	H	H	Cl	Cl

phoric acid, the titled quinolones $\mathbf{1 c - 1 0 c}$ were received (Scheme 1, Table 1 and 2).

Table 1
Characteristic Data of Chloro and Dichloro Derivatives of Phenacyl Anthranilates 1-10b

Compound	M.P. ${ }^{\circ} \mathrm{C}$	Formula	Calculated /Found		
	Yield. $\%$	M.W.	$\% \mathrm{C}$	$\% \mathrm{H}$	$\% \mathrm{~N}$
1b	$84-86$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	62.18	4.17	4.83
	52	289.73	61.93	3.86	4.79
2b	$157-160$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	62.18	4.17	4.83
	82	289.73	62.85	4.20	4.52
3b	$135-140$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	62.18	4.17	4.83
	70	289.73	62.39	3.84	4.74
4b	$146-148$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	62.18	4.17	4.83
	81	289.73	61.87	4.02	4.82
5b	127	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	55.57	3.42	4.32
	82	324.18	55.25	3.06	4.24
6b	$124-126$	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	55.57	3.42	4.32
	83	324.18	55.55	3.69	4.43
7b	$118-121$	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	55.57	3.42	4.32
	85	324.18	55.54	3.56	4.44
8b	$195-198$	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	55.57	3.42	4.32
	91	324.18	55.54	3.56	4.44
9b	$191-192$	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	55.57	3.42	4.32
	86	324.18	55.67	3.03	4.18
10b	$139-140$	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	55.57	3.42	4.32
	66	324.18	55.61	2.99	4.24

Structures of the compounds were confirmed by NMR. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were assigned using gs (gradient selected)-H, H-COSY, gs-HSQC (optimised for ${ }^{1} \mathrm{~J}\left({ }^{13} \mathrm{C}, \mathrm{H}\right)$ ca 145 Hz) gs-HMBC [3] (optimised for ${ }^{3} \mathrm{~J}\left({ }^{13} \mathrm{C}, \mathrm{H}\right)$ ca $\left.5-10 \mathrm{~Hz}\right)$. H,H-COSY provided proton-proton connectivity. A correlation of proton $\mathrm{H}(6)$ with carbon of $\mathrm{C}(7) \mathrm{OO}$ group in HMBC spectra was key information for the assignment of proton and carbon resonances in compounds $\mathbf{1 b} \mathbf{- 1 0 b}$ and, similarly, a correlation of proton $\mathrm{H}(5)$ with carbon of $\mathrm{C}(4)=\mathrm{O}$ group in HMBC spectra was

Table 2
Characteristic Data of Chloro and Dichloro Derivatives of 3-Hydroxy-2-phenylquinolin-4(1 H)-ones $\mathbf{1 - 1 0 c}$

Compound	M.P. ${ }^{\circ} \mathrm{C}$	Formula	Calculated /Found		
	Yield. $\%$	M.W.	$\% \mathrm{C}$	$\% \mathrm{H}$	$\% \mathrm{~N}$
1c	$308-312.5$	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	66.30	3.71	5.15
	82	271.71	66.51	3.85	5.31
2c	$300-303$	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	66.30	3.71	5.15
	53	271.71	66.65	4.01	5.32
3c	>350	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	66.30	3.71	5.15
	95	271.71	66.22	3.76	5.18
4c	$272-274$	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	66.30	3.71	5.15
	65	271.71	65.98	4.13	4.87
5c	$314-319$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	58.84	2.96	4.57
	45	306.16	58.53	2.64	4.55
6c	$297-300$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	58.84	2.96	4.57
	47	306.16	58.80	2.63	4.36
7c	$171-174$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	58.84	2.96	4.57
	45	306.16	58.51	3.17	4.70
8c	$342-346$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	58.84	2.96	4.57
	93	306.16	58.74	2.56	4.25
9c	$212-215$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	58.84	2.96	4.57
	90	306.16	58.64	3.28	4.62
$\mathbf{1 0 c}$	$262-4$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	58.84	2.96	4.57
	65	306.16	59.30	2.31	4.55

key information for the assignment of proton and carbon resonances in compounds $\mathbf{1 c}-10 \mathrm{c}$ (Table 4, 5, 6 and 7 in the experimental part).

Derivatives 1c, 7c and $9 \mathbf{c}$ were isolated in the form of monocrystal and their structure was confirmed by X-ray diffraction. It is the definitive confirmation of 2-phenyl-3-hydroxy- $4(1 H)$-quinoline as a product of anomalous cyclization of phenacyl esters of anthranilic acid in polyphosphoric acid instead of 2-aryl- $1 H$-benz[e][1,4]oxa-zepin-5-ones described in previous papers [4]. Structure of quinolones is drawn in Figure 1a, 1b, 2a, 2b and $\mathbf{3}$.

Figure 1a. ORTEP view of compound 1c showing the thermal ellipsoids at 40% probability level.

Figure 1 b . Chain of hydrogen-bonded molecules in crystal packing of compound 1c.

Figure 2a. ORTEP view of compound 7c showing the thermal ellipsoids at 40% probability level.

Figure 2b. Dimer of hydrogen-bonded molecules in crystal packing of compound 7c.

Figure 3. Dimer of hydrogen-bonded molecules in crystal packing of compound 9c.

As mentioned previously, biological properties of 2-sub-stituted3-hydroxy-2-phenylquinolin-4(1H)-ones are not known. The cytotoxic properties of some substituted 2-phenylquinolin-4(1H)-ones and their affinity to colchicin binding place were descr recently[5].
The cytostatic properties of prepared quinolinones have been evaluated in the National Cancer Institute Bethesda. All compounds have been screened in the 3-cell line breast cancer MCF7, non-small cell lung cancer NCIH460 and CNS cancer SF-268.
Each cell line is inoculated and preincubated on a microtiter plate. Test agents are then added at a single concentration and the culture incubated for 48 hours. Endpoint determination is made with alamar blue. Results of each test agent are reported as the percent of growth of the treated cells when compared to the untreated control cells (Table 3). Compounds which reduce the growth of any one of the cell lines to approximately 32% or less are passed on for evaluation in the full panel of 60 cell lines over a $5-\log$ dose range.

In our case, three compounds ($6 \mathbf{c}, 7 \mathbf{c}, 9 \mathbf{c}$) which passed NCI's criteria were evaluated against the 60 tumor cell lines.

These compounds have limited effects on cancer lines in lower concentration. The most active was compound 7c. It has the most notable effects in the screen on some lines from the colon panel and on some lines from the breast cancer panel.
These compounds have limited effects on cancer lines in the lower concentration. Activity of these three compounds was characterized by $\log \mathrm{GI}_{50}$, where GI_{50} is the concentration which causes growth inhibition of 50%.
The most active compound of this series of quinolinone derivatives was compound 7c. Compound 9c did not exhibit any activity where $\log \mathrm{GI}_{50}$ is smaller than -5 .

Table 3
Percent of Growth of the Cells Treated with $1.10^{-4} \mathrm{~mol}$ Compound Compared to the Untreated Cells

Compound	M-CF7	NCI-H460	SF-268
1c	63	84	84
2c	46	59	55
$\mathbf{3 c}$	61	72	47
$\mathbf{4 c}$	66	84	55
$\mathbf{5 c}$	33	70	71
$\mathbf{6 c}$	29	70	73
$\mathbf{7 c}$	12	11	20
$\mathbf{8 c}$	61	89	81
$\mathbf{9 c}$	65	27	86
$\mathbf{1 0 c}$	61	91	74

Activity against Breast Cancer exhibit compounds 6c and 7c. Both of these compounds were active against the cell line MCF7, $\log \mathrm{GI}_{50}$ was -5.68 and -5.77 .

Activity against melanoma was similar for both these compounds. These compounds were active against the cell line M147. Activity of both compounds was very similar, $\log \mathrm{GI}_{50}$ was approximately -5.50 .

Both compounds $\mathbf{6 c}$ and $\mathbf{7 c}$ exhibit some activity against Ovarian Cancer. The compound 6c was active against the cell line IGROV1 $\log \mathrm{GI}_{50}=-5.48$. The compound 7c exhibits activity against the cell line $\mathrm{OVCAR}-8 \log \mathrm{GI}_{50}=$ -5.50.

Different activity of these compounds was observed against Renal cancer. The compound 7c was not active. Compound 6c exhibits activity against the cell lines CAKI-1 and UO-31 $\log \mathrm{GI}_{50}=-5.44$ and $\log \mathrm{GI}_{50}=$ -5.45.

The compound $\mathbf{6 c}$ was not active against leukemia. Compound 7c was active against most of tested leukemia lines. Especially against the cell lines CCRF-CEM, HL60(TB), MOLT-4 and K-562; $\log \mathrm{GI}_{50}$ was between -5.48 to -5.81 .

The compound 7c exhibits moderate activity against Non-Small Cell Lung Cancer. Higher activity of this compound was observed against the cell lines HOP-62, NCIH322M, NCI-H460. Logarithm of the concentration GI_{50} was between -5.64 to -5.93 .
The compound 7c was also active against the Colon Cancer cell line HCC-2998 and the cell line HCT-116. There was $\log \mathrm{GI}_{50}=-5.77$ and $\log \mathrm{GI}_{50}=-5.62$.

EXPERIMENTAL

Melting points were determined on a Boetius stage. Infrared spectra (KBr disks) were taken with an ATI Unicam Genesis FTIR instrument. NMR spectra of solutions in DMSO- d_{6} (TMS as internal standard) were measured on a Bruker Avance 300 spectrometer (300 MHz). Elemental analyses were obtained with an EA 1108 Elemental Analyzer (Fison Instrument).

General Procedure of Preparation of Chloro Phenacyl Anthranilates (b).

Acid a (13 mmol) was dissolved in dimethylformamide (10 $\mathrm{ml})$ and sodium carbonate $(0.69 \mathrm{~g}, 6.5 \mathrm{mmol})$ was added to the solution. The reaction mixture was stirred for 10 minutes at laboratory temperature and then the reaction mixture was heated at 65 ${ }^{\circ} \mathrm{C}$ for 45 min . The mixture was cooled to $25^{\circ} \mathrm{C}$ and phenacyl bromide ($2.59 \mathrm{~g}, 13 \mathrm{mmol}$) was added. The reaction temperature increased spontaneously to $30^{\circ} \mathrm{C}$. The mixture was heated up to $70^{\circ} \mathrm{C}$ for 60 minutes. The hot mixture was poured onto crushed ice and the precipitated solid was collected by suction, thoroughly washed with water and dried at $60^{\circ} \mathrm{C}$. The dried product was crystallized from hot acetone and dried at $60^{\circ} \mathrm{C}$.
General Procedure of Preparation of Chloro and Dichloro 2-Phenyl-3-hydroxyquinolin-4(1 H)-ones (c).
Phenacyl anthranilate b ($2.03 \mathrm{~g}, 7.2 \mathrm{mmol}$) was stirred with polyphosphoric acid $(30 \mathrm{~g})$ at 100 to $110^{\circ} \mathrm{C}$ for 2 h . Then the reaction mixture was poured into water $(100 \mathrm{ml})$ and the precipitated solid was collected by filtration and washed with water to neutral pH . The solid was dried at $80^{\circ} \mathrm{C}$ and crystallized from 2methoxyethanol. The product was collected by filtration and washed with cold acetone.

NMR Spectra.
The ${ }^{1} \mathrm{H}(500.13 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125.76 \mathrm{MHz})$ and NMR spectra of compounds $\mathbf{1 b}, \mathbf{1 c} \mathbf{- 1 0 b}, \mathbf{1 0} \mathbf{c}$ were measured on a Bruker Avance 500 spectrometer equipped with 5 mm broadband probe with z-shielding and a SGI O2 computer in hexadeuteriodimethyl sulfoxide at ambient temperature. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shifts were referred to the central peak of DMSO-d $6\left(\delta\left({ }^{13} \mathrm{C}\right)=\right.$ $\left.39.60, \delta\left({ }^{1} \mathrm{H}\right)=2.55\right)$. Positive values of chemical shifts denote high frequency shifts with respect to standards. Two dimensional gs (gradient selected)-H,H-COSY, gs-HSQC and gs-HMBC [6,7] spectra were measured using standard microprograms provided by Bruker [3].

Scheme 2

Table 4
${ }^{1} \mathrm{H}$ Chemical Shifts of Phenacyl anthranilates $\mathbf{1 - 1 0 b}$ in DMSO- d_{6}

No	$\mathbf{1 b}$	$\mathbf{2 b}$	$\mathbf{3 b}$	$\mathbf{4 b}$	$\mathbf{5 b}$	$\mathbf{6 b}$	$\mathbf{7 b}$	$\mathbf{8 b}$	$\mathbf{9 b}$	$\mathbf{1 0 b}$
2	6.21	6.85	6.94	6.80	6.30	6.50	6.30	6.99	6.92	7.08
3	6.70	6.90	6.96	-	6.84	6.89	-	7.14	-	-
4	7.21	7.38	-	7.61	7.43	-	6.78	-	7.88	-
5	6.81	-	6.65	6.71	-	6.79	7.44	-	-	6.91
6	-	7.81	7.87	7.93	-	-	-	7.96	7.78	7.90
8	5.88	5.74	5.74	5.79	5.91	5.88	5.94	5.75	5.80	5.79
11	8.10	8.06	8.06	8.07	8.11	8.10	8.11	8.06	8.06	8.06
12	7.63	7.63	7.63	7.62	7.64	7.63	7.65	7.63	7.64	7.62
13	7.77	7.74	7.76	7.75	7.78	7.77	7.79	7.76	7.77	7.75

Table 5
${ }^{13}$ C Chemical Shifts of Phenacyl anthranilates 1-10b in DMSO- d_{6}

No	$\mathbf{1 b}$	$\mathbf{2 b}$	$\mathbf{3 b}$	$\mathbf{4 b}$	$\mathbf{5 b}$	$\mathbf{6 b}$	$\mathbf{7 b}$	$\mathbf{8 b}$	$\mathbf{9 b}$	$\mathbf{1 0 b}$
1	114.4	109.1	107.3	110.5	116.3	113.0	116.5	108.5	110.9	108.8
2	148.8	150.5	152.5	147.0	147.1	149.7	143.8	150.9	146.1	148.3
3	116.4	118.8	115.5	119.4	115.9	113.6	117.2	117.8	120.5	117.2
4	132.1	134.4	139.1	134.5	132.3	136.2	131.8	136.9	129.1	137.5
5	114.5	118.0	115.0	115.5	117.6	115.8	117.0	115.9	118.0	116.1
6	131.5	129.6	132.9	130.2	128.8	132.9	129.8	131.9	133.8	130.5
7	165.3	165.9	166.1	166.4	164.8	164.5	164.5	165.2	165.4	165.9
8	67.4	66.9	66.7	67.0	67.7	67.5	67.8	67.0	67.4	67.1
9	193.9	193.1	193.1	193.0	193.9	193.7	193.9	192.9	192.8	192.8
10	133.6	134.0	134.0	134.0	133.5	133.5	133.4	134.0	133.9	133.9
11	128.1	127.9	127.9	127.9	128.2	128.1	128.2	127.9	128.0	127.9
12	129.1	129.0	129.0	129.0	129.1	129.1	129.1	129.1	129.1	129.0
13	134.4	134.1	134.1	134.1	134.6	134.4	134.6	134.2	134.3	134.1

Scheme 3

Table 6
${ }^{1} \mathrm{H}$ Chemical Shifts of Substituted 2-Phenyl-3-hydroxyquinolinones $\mathbf{1 - 1 0 c}$ in DMSO-d 6

No	$\mathbf{1 c}$	$\mathbf{2 c}$	$\mathbf{3 c}$	$\mathbf{4 c}$	$\mathbf{5 c}$	$\mathbf{6 c}$	$\mathbf{7 c}$	$\mathbf{8 c}$	$\mathbf{9 c}$	$\mathbf{1 0 c}$
1	-	8.67	-	8.65	8.45	8.52	8.78	-	8.80	8.82
3	11.72	11.83	11.55	11.55	11.93	11.70	10.34	11.81	10.75	10.62
5	-	8.15	8.21	8.22	-	-	-	8.27	8.14	8.19
6	7.73	-	7.31	7.34	-	7.32	7.32	-	-	$7.57[\mathrm{~b}]$
7	7.51	7.66	-	7.85	7.71	-	7.76	-	7.86	-
8	7.26	7.81	7.82	-	7.75	7.77	-	7.96	-	-
10	7.84	7.85	7.86	7.81	7.84	7.85	7.82	7.83	7.84	7.84
11	7.60	7.60	7.61	7.60	7.61	7.62	7.60	7.61	7.58	$7.57[\mathrm{~b}]$
12	7.54	7.55	7.57	7.55	7.56	7.59	7.55	7.57	7.54	$7.57[b]$

[b] Middle of the multiplet.

X-Ray crystal Structure Analysis.
Crystal data for $\mathbf{1 c}$: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{2}$; monoclinic, space group $P 2_{1} / a, a=13.7745(6), b=6.4125(3), c=14.1271(8) \AA, \beta=$ $102.538(2)^{\circ}, \mathrm{V}=1218.1(1) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{c}}=1.482 \mathrm{~g} \mathrm{~cm}^{-3}$. Intensity data collected with $\theta \leq 28^{\circ}$ using Mo-K α radiation ($\lambda=$ $0.71073 \AA$) on a Nonius Kappa CCD diffractometer; T $=295 \mathrm{~K}$, 2911 independent reflections measured; 2146 reflections observed [$\mathrm{I} \geq 2 \sigma(\mathrm{I})$]; solution by direct methods [SIR92] [8]; full matrix least-squares refinement, on F^{2}, using SHELXL-97 [9] with anisotropic non-H atoms and isotropic hydrogens. Final R index $=0.044$ (observed reflections). An ORTEP view [10] of the molecule is shown in Figure 1a. The molecules form intramolecular hydrogen bond: O3-H3...O4 [O3...O4 = 2.584(2) Å, O3$\left.\mathrm{H} 3 \ldots \mathrm{O} 4=124(3)^{\circ}\right]$ and chains linked by intermolecular hydrogen bonds assisted by resonance [11,12]: N1-H1...O4 [N1...O4 $=2.905(2) \AA$, N1-H1 $\left.\ldots \mathrm{O} 4=159(2)^{\circ}\right]$ (Figure 1b).

Table 7
${ }^{13} \mathrm{C}$ Chemical Shifts of Substituted 3-Hydroxy-2-phenylquinolin-4(1H)-ones 1-10c in DMSO-d 6

No	$\mathbf{1 c}$	$\mathbf{2 c}$	$\mathbf{3 c}$	$\mathbf{4 c}$	$\mathbf{5 c}$	$\mathbf{6 c}$	$\mathbf{7 c}$	$\mathbf{8 c}$	$\mathbf{9 c}$	$\mathbf{1 0 c}$
2	129.8	132.2	131.6	132.5	129.1	129.7	131.0	132.7	[a]	[a]
3	138.9	138.4	138.5	138.6	138.8	139.6	139.0	138.7	138.8	[a]
2	169.6	169.0	169.7	170.2	168.9	169.2	169.8	168.9	168.9	169.5
4	117.5	122.7	120.3	118.5	118.5	116.2	120.9	121.7	[a]	[a]
4 a	131.5	123.3	126.9	124.2	129.8	133.3	130.1	125.9	[a]	[a]
5	118.1	126.7	122.4	122.4	126.5	123.8	124.5	124.9	[a]	[a]
6	130.3	130.8	135.2	131.1	131.2	134.1	131.8	133.2	[a]	[a]
7	124.4	121.1	117.5	121.8	119.4	117.0	118.8	120.3	[a]	[a]
8	140.3	136.6	138.2	134.5	139.7	140.4	136.2	136.9	[a]	[a]
8 a	131.7	132.4	132.0	132.3	131.6	131.6	131.8	132.0	[a]	[a]
9	129.2	129.4	129.2	129.7	129.3	129.2	129.5	129.4	129.4	129.6
10	128.4	128.4	128.4	128.3	128.5	128.5	128.3	128.5	128.3	128.2
11	129.5	129.5	129.5	129.4	129.6	129.6	129.4	129.7	[a]	129.3
12	129.5									

[a] Broad and overlaying signals.

Crystal data for 7 c : $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$; orthorhombic, space group $P b c a, a=15.8452(3), b=6.9292(1), c=24.3340(5) \AA, \mathrm{V}=$ $2671.74(8) \AA^{3}, \mathrm{Z}=8, \mathrm{D}_{\mathrm{c}}=1.522 \mathrm{~g} \mathrm{~cm}^{-3}$. Intensity data collected with $\theta \leq 28^{\circ}$ using Mo-K α radiation ($\lambda=0.71073 \AA$) on a Nonius Kappa CCD diffractometer; T $=295 \mathrm{~K}, 3185$ independent reflections measured; 2266 reflections observed $[\mathrm{I} \geq 2 \sigma(\mathrm{I})$]; solution by direct methods [SIR92][8], full matrix least-squares refinement, on F^{2}, using SHELXL-97 [9] with anisotropic non-H atoms and isotropic hydrogens. Final R index $=0.039$ (observed reflections). An ORTEP view [10] of the molecule is shown in Figure 2a. The molecules form intramolecular hydrogen bond: O3$\mathrm{H} 3 \ldots \mathrm{O} 4\left[\mathrm{O} 3 \ldots \mathrm{O} 4=2.668(2) \AA, \mathrm{O} 3-\mathrm{H} 3 \ldots \mathrm{O} 4=112(2)^{\circ}\right]$ and dimers linked by intermolecular hydrogen bonds: O3-H3...O4 $\left[\mathrm{O} 3 \ldots \mathrm{O} 4=2.786(2) \AA\right.$ A. O3-H3 $\left.\ldots \mathrm{O} 4=160(3)^{\circ}\right]$ (Figure 2b).

Crystal data for 9 c: $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$; monoclinic, space group $P 2_{1} / c, a=9.8478(2), b=13.1654(2), c=20.3946(6) \AA, \beta=$ 94.016(1) ${ }^{\circ}, \mathrm{V}=2637.7(1) \AA^{3}, \mathrm{Z}=8, \mathrm{D}_{\mathrm{c}}=1.542 \mathrm{~g} \mathrm{~cm}^{-3}$. Intensity data collected with $\theta \leq 28^{\circ}$ using Mo-K α radiation ($\lambda=0.71073$ \AA A) on a Nonius Kappa CCD diffractometer; T $=295$ K, 5973 independent reflections measured; 3842 reflections observed [$\mathrm{I} \geq$ $2 \sigma(\mathrm{I})$]; solution by direct methods [SIR92] [8], full matrix leastsquares refinement, on F^{2}, using SHELXL-97 [9] with anisotropic non-H atoms and isotropic hydrogens. Final R index $=0.047$ (observed reflections). An ORTEP view [10] of the asymmetric unit built up by two independent molecules is shown in Figure 3. These molecules form intramolecular hydrogen bond: O3-H3...O4 [O3A...O4A $=2.728(3) \AA$, O3A-H3A...O4A $=114(3)^{\circ}$; О3B $\ldots \mathrm{O} 4 \mathrm{~B}=2.751(3) \AA$, O3B-H3B $\ldots \mathrm{O} 4 \mathrm{~B}=$ $115(3)^{\circ}$] and are linked in dimers by means of intermolecular hydrogen bonds: $\mathrm{O} 3-\mathrm{H} 3 \ldots \mathrm{O} 4[\mathrm{O} 3 \mathrm{~A} \ldots . \mathrm{O} 4 \mathrm{~B}=2.637(2) \AA, \mathrm{O} 3 \mathrm{~A}-$ Н3А \ldots O4B $=143(3)^{\circ} ;$ O3B \ldots O4A $=2.661(2) \AA$, O3BН3B...O4A = 147(3) ${ }^{\circ}$].

Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 202132, 202133,
202134. Copies of the data can be obtained, free of charge, on application to CCDC, Union Road, Cambridge CB2 1EZ, UK [fax: $+(44)(0)-1223-336033$ or e-mail: deposit @ccdc.cam.ac.uk]

Acknowledgment.

This work was financially supported by the Grant Agency of the Czech Republic. (Grant No. 203/01/1360).

REFERENCES AND NOTES

[1] P. Hradil and J. Jirman, Collect. Czech. Chem. Commun., 60, 1357 (1995)
[2] P. Hradil, J. Hlaváč and K. Lemr, J. Heterocyclic Chem., 36, 141 (1999).
[3] XWINNMR Version 3.0. Bruker (2001).
[4] D. Sicker , J. Prakt. Chem ., 332, 336 (1990).
[5] S. Ch. Kuo , H. Z. Lee , J. P. Juang, Y. T. Lin , T. S. Wu , J. J. Chang , D. Lednicer , K. D. Paull , Ch. M. Lin , E. Hamel and K. H. Lee, J. Med. Chem., 36, 1146 (1993).
[6] W. Hull In: WR Croasmun and R. M. K. Carlson, Editors Two-Dimensional NMR Spectroscopy. Application for Chemists and Biochemists. Second Edition,. New York: VCH Publishers (1994). Chapter 2.
[7] S. Braun, H-O Kalinowski and S. Berger, 150 and More Basic NMR Experiments, Second Edition. Weinheim: Wiley-VCH (1998)
[8] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, Appl. Crystallogr,,27,435 (1994).
[9] G. M. Sheldrick, SHELXL-97. Program for Refinement for Crystal Structures; University of Göttingen: Göttingen, Germany.
[10] C. K. Johnson, ORTEPII, Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN (1976).
[11] V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, Acta Crystallogr. Sect. B, 51, 1004 (1995).
[12] V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, Acta Crystallogr. Sect. B, 54, 50 (1998).

